Home
Class 11
MATHS
" 4."(1+(1)/(1))(1+(1)/(2))(1+(1)/(3)).....

" 4."(1+(1)/(1))(1+(1)/(2))(1+(1)/(3))...(1+(1)/(n))=(n+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following by using the Principle of mathematical induction AA n in N (1-(1)/(2))(1-(1)/(3)) (1-(1)/(4))…….(1-(1)/(n+1))=(1)/(n+1)

What is the value of the following? (1-(1)/(2))(1-(1)/(3))(1-(1)/(4))dots(1-(1)/(n-1))(1-(1)/(n))

For all quad prove that (1)/(1.2)+(1)/(2.3)+(1)/(3.4)+...+(1)/(n(n+1))=(n)/(n+1)

For all n ge 1 prove that (1)/(1.2)+ (1)/(2.3)+(1)/(3.4)+.....+(1)/(n(n+1))=(n)/(n+1)

For all n ge 1 prove that (1)/(1.2)+ (1)/(2.3)+(1)/(3.4)+.....+(1)/(n(n+1))=(n)/(n+1)

lim_(n rarr oo) ((1)/(1.2) + (1)/(2.3) + (1)/(3.4) +…..+ (1)/(n(n+1))) is :

If s_(n)=(1-(4)/(1))(1-(4)/(9))(1-(4)/(25))......(1-(4)/((2n-1)^(2))) where n in N, then

prove that (1-(1)/(2^(2)))(1-(1)/(3^(2)))(1-(1)/(4^(2)))(1-(1)/(n^(2)))=(n+1)/(2n) for all natural numbers,n>=1(1-(1)/(n^(2)))=(n+1)/(2n)

By using the principle of mathematical induction , prove the follwing : P(n) : (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + …….+ (1)/(n(n+1)) = (n)/(n+1) , n in N