Home
Class 11
MATHS
" (i) "^(n)C(r)+^(n-1)C(r-1)+^(n-1)C(r-2...

" (i) "^(n)C_(r)+^(n-1)C_(r-1)+^(n-1)C_(r-2)=^(n+1)C_(r)

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that .^(n)C_(r)+.^(n-1)C_(r-1)+.^(n-1)C_(r-2)=.^(n+1)C_(r) .

Prove that: (i) r.^(n)C_(r) =(n-r+1).^(n)C_(r-1) (ii) n.^(n-1)C_(r-1) = (n-r+1) .^(n)C_(r-1) (iii) .^(n)C_(r)+ 2.^(n)C_(r-1) +^(n)C_(r-2) =^(n+2)C_(r) (iv) .^(4n)C_(2n): .^(2n)C_(n) = (1.3.5...(4n-1))/({1.3.5..(2n-1)}^(2))

show that ^nC_r+ ^(n-1)C_(r-1)+ ^(n-1)C_(r-2)= ^(n+1)C_r

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

Show that .^nC_r+.^(n-1)C_(r-1)+.^(n-1)C_(r-2)=.^(n+1)C_r

Show that , (.^(n)C_(r)+^(n)C_(r-1))/(.^(n)C_(r-1)+^(n)C_(r-2))=(.^(n+1)p_(r))/(r.^(n+1)p_(r-1))

If (1+2x+x^(2))^(n)=sum_(r=0)^(2n)a_(r)x^(r), then a=(^(n)C_(2))^(2) b.^(n)C_(r).^(n)C_(r+1) c.^(2n)C_(r) d.^(2n)C_(r+1)

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=