Home
Class 11
MATHS
(a^(2)-c^(2))/(b^(2))=(sin(A-C))/(sin(A+...

(a^(2)-c^(2))/(b^(2))=(sin(A-C))/(sin(A+C))

Promotional Banner

Similar Questions

Explore conceptually related problems

In any Delta ABC, prove that :(b^(2)-c^(2))/(a^(2))=(sin(B-C))/(sin(B+C))

In DeltaABC show that (b^(2)-c^(2))/(a^(2))=(sin(B-C))/(sin(B+C))

In a DeltaABC" show that "(b^(2)-c^(2))/(a^(2))=(sin(B-C))/(sin(B+C))

In Delta ABC,(b^(2)+c^(2))/(b^(2)-c^(2))=(sin(B+C))/(sin(B-C)) then the triangle is

In DeltaABC=(b^(2)+c^(2))/(b^(2)-c^(2))=(Sin(B+C))/(Sin(B-C)) then the triangle is

In any DeltaABC , prove that : (b^2 - c^2)/a^2 = (sin (B-C))/(sin(B+C))

In any triangle ABC, prove that : (b^2-c^2)/(a^2)= sin (B -C)/sin(B+C) .

(x) (a sin(B-C))/(b^(2)-c^(2)) = (b sin (C-A))/(c^(2)-a^(2)) = (c sin(A-B))/(a^(2)-b^(2))

Prove that (a sin(B-C))/(b^(2)-c^(2))=(b sin(C-A))/(c^(2)-a^(2))=(c sin(A-B))/(a^(2)-b^(2))