Home
Class 6
MATHS
int(0)^(1)cos^(-1)xdx=1...

int_(0)^(1)cos^(-1)xdx=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following integral: int_(0)^(1)cos^(-1)xdx

int_(-a)^(a)(cos^(-1)x-sin^(-1)sqrt(1-x^(2)))dx is (a>0) there int_(0)^(a)cos^(-1)xdx=A) is

If agt0 and A=int_(0)^(a)cos^(-1)xdx, and int_(-a)^(a)(cos^(-1)x-sin^(-1)sqrt(1-x^(2)))dx=pia-lamdaA . Then lamda is

If agt0 and A=int_(0)^(a)cos^(-1)xdx, and int_(-a)^(a)(cos^(-1)x-sin^(-1)sqrt(1-x^(2)))dx=pia-lamdaA . Then lamda is

If agt0 and A=int_(0)^(a)cos^(-1)xdx, and int_(-a)^(a)(cos^(-1)x-sin^(-1)sqrt(1-x^(2)))dx=pia-lamdaA . Then lamda is

Prove that int_(0)^(1)sin^(-1)xdx=(pi)/(2)-1

int_(0)^(1)Sin^(-1)xdx=

int_(0)^(1)Tan^(-1)xdx=

int_(0)^(1)xsin^(-1)xdx

int_(0)^(1)tan^(-1)xdx