Home
Class 12
MATHS
[" If "S(r)=|[2r,x,n(n+1)],[6r^(2)-1,y,n...

[" If "S_(r)=|[2r,x,n(n+1)],[6r^(2)-1,y,n^(2)(2n+3)],[4r^(3)-2nr,z,n^(3)(n+1)]|" then "sum_(r=1)^(n)S_(r)" does not depend on "],[[" (A) "x," (B) "y," (C) "n]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If S_r = |[2r,x,n(n+1)],[6r^2-1,y,n^2(2n+3)],[4r^3-2nr,z,n^3(n+1)]| then sum_(r=1)^nS_r does not depend on-

If S_r=|{:(2r,x,n(n+1)),(6r^2-1,y,n^2(2n+3)),(4r^3-2nr,z,n^3(n+1)):}| , then the value of sum_(r=1)^(n)S_r is independent of

If D_(r)=|(r,x,n(n+1)//2),(2r-1,y,n^(2)),(3r-1,z,n(3n+1)//2)| then sum_(r=1)^(n)D_(r)=

If Delta_(r)=|(r-1,n,6),((r-1)^(2),2n^(2),4n-2),((r-1)^(3),3n^(3),3n^(2)-3n)| then sum_(r=1)^(n)Delta_(r)=

If D_(r)=|(2^(r-1),2(3^(r-1)),4(5^(4-1))),(x,y,z),(2^(n)-1,3^(n)-1,5^(n)-1)| then sum_(r=1)^(n)D_(r)=

If D_r=|[r,1,(n(n+1))/(2)],[2r-1,4,n^2],[2^(r-1),5,2^(n)-1]| then, sum_(r=1)^n D_r

If D_(r) = |(r,1,(n(n +1))/(2)),(2r -1,4,n^(2)),(2^(r -1),5,2^(n) -1)| , then the value of sum_(r=1)^(n) D_(r) , is

If D_(r) = |(r,1,(n(n +1))/(2)),(2r -1,4,n^(2)),(2^(r -1),5,2^(n) -1)| , then the value of sum_(r=1)^(n) D_(r) , is