Home
Class 14
MATHS
(-5i)quad tan^(-1)2x+tan^(-1)3x=...

(-5i)quad tan^(-1)2x+tan^(-1)3x=

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

Let |{:(tan^(-1)x, tan^(-1)2x, tan^(-1)3x), (tan^(-1)3x, tan^(-1)x, tan^(-1)2x), (tan^(-1)2x, tan^(-1)3x, tan^(-1)x):}|=0 , then the number of values of x satisfying the equation is

Solve for x, tan^(-1)(x-1)+tan^(-1)x +tan^(-1)(x+1) =tan^(-1)3x .

Let |[tan^(-1)x,tan^(-1)2x,tan^(-1)3x],[tan^(-1)3x,tan^(-1)x,tan^(-1)2x],[tan^(-1)2x,tan^(-1)3x,tan^(-1)x]|=0 , then the number of values of x satisfying the equation is 1 (b) 2 (c) 3 (d) 4

Let |[tan^(-1)x,tan^(-1)2x,tan^(-1)3x],[tan^(-1)3x,tan^(-1)x,tan^(-1)2x],[tan^(-1)2x,tan^(-1)3x,tan^(-1)x]| =0 , then the number of values of x satisfying the equation is (a) 1 (b) 2 (c) 3 (d) 4

Let |[tan^(-1)x,tan^(-1)2x,tan^(-1)3x],[tan^(-1)3x,tan^(-1)x,tan^(-1)2x],[tan^(-1)2x,tan^(-1)3x,tan^(-1)x]| =0 , then the number of values of x satisfying the equation is (a) 1 (b) 2 (c) 3 (d) 4

Let |[tan^(-1)x,tan^(-1)2x,tan^(-1)3x],[tan^(-1)3x,tan^(-1)x,tan^(-1)2x],[tan^(-1)2x,tan^(-1)3x,tan^(-1)x]| =0 , then the number of values of x satisfying the equation is (a) 1 (b) 2 (c) 3 (d) 4

Solve tan^(-1)(x-1) +tan^(-1) x +tan^(-1)(x+1)= tan^(-1)(3x) .

Solve: tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)= tan^(-1)3x.

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x