Home
Class 12
MATHS
" 23.If "y=sqrt(x)+(1)/(sqrt(x))*" Prove...

" 23.If "y=sqrt(x)+(1)/(sqrt(x))*" Prove that "2x(dy)/(dx)+y=2sqrt(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y=sqrt(x)+(1)/sqrt(x) , then show that 2x(dy)/(dx)+y=2sqrt(x) .

If y=sqrt(x)+(1)/sqrt(x) , then show that 2x(dy)/(dx)+y=2sqrt(x) .

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

If y= sqrt ( x) + (1)/( sqrtx ) , prove that 2x (dy)/( dx ) + y=2 sqrt (x ) .

y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y=log(sqrt(x)+(1)/(sqrt(x))). Prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=sqrt(x)+(1)/(x), Show that 2x(dy)/(dx)+y=2sqrt(x)

If y=log(sqrt(x)+sqrt(1/x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))