Home
Class 12
MATHS
If A=[[x,2,3],[-1,5,3]] ,B=[[1,-2,y],[1,...

If `A=[[x,2,3],[-1,5,3]]` ,`B=[[1,-2,y],[1,z,-2]]` and `C=[[3,0,1],[0,2,1]]`, also `A+B-C=O` then find `x,y,z`

Promotional Banner

Similar Questions

Explore conceptually related problems

If X= [(2,3,0),(1,-1,5)] ,Y= [(-1,-2,3),(-1,0,2)] ,Z= [(0,4,-1),(5,6,-5)] find 3X+4Y-Z

Find x,y,z given that [[x],[y],[z]]=[[3,1,3],[2,0,2],[-5,1,-1]][[2],[4],[3]]

If A=[[1,-2,1],[0,-1,1],[2,0,-3]] then find A^(-1) and hence solve the system of equations x-2y + z = 0 , -y + z = -2 and 2x-3z= 10.

If A=[{:(1,-2,0),(2,1,3),(0,-2,1):}],B=[{:(7,2,-6),(-2,1,-3),(-4,2,5):}] , find AB Also solve x-2 y=10, 2x+y+3z=8, -2y+z=7

A=[[2,0,00,2,00,0,2]] and B=[[x_(1),y_(1),z_(1)x_(2),y_(2),z_(2)x_(3),y_(3),z_(3)]]

If x, y, z are different and Delta=|[x, x^2, 1+x^3],[y, y^2, 1+y^3],[z, z^2, 1+z^3]|=0 then show that 1+xyz=0

If x, y, z are different and Delta=|[x, x^2, 1+x^3],[y, y^2, 1+y^3],[z, z^2, 1+z^3]|=0 then show that 1+xyz=0

If O(0, 0, 0), A(x, 1, -1), B(0, y, 2) and C(2, 3, z) are coplanar, then

If x!=y!=za n d|[x,x^2, 1+x^3],[y ,y^2 ,1+y^3],[z, z^2, 1+z^3]|=0, then the value of x y z is a.1 b. 2 c. -1 d. 2