Home
Class 10
MATHS
Evaluate the following (sin theta +co...

Evaluate the following
` (sin theta +cos theta )^(2) +(sin theta -cos theta )^(2) `

Text Solution

Verified by Experts

The correct Answer is:
`2`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    NCERT GUJARATI|Exercise OPTIONAL EXERCISE|6 Videos
  • TRIGONOMETRY

    NCERT GUJARATI|Exercise Exercise -11.3|11 Videos
  • TANGENTS AND SECANTS TO A CIRCLE

    NCERT GUJARATI|Exercise Try this|2 Videos

Similar Questions

Explore conceptually related problems

Given cot theta =(7)/(8) , then evaluate (i) ((1+sin theta )( 1-sin theta ))/( (1+cos theta )(1-cos theta )) " "(ii) ((1+sin theta ))/( cos theta )

If 0 lt theta lt (pi)/2 and 5 tan theta = 4 then (5 sin theta - 3 cos theta) / (sintheta +2 cos theta ) = 5/14

Let theta in (pi//4,pi//2), then Statement I (cos theta)^(sin theta ) lt ( cos theta )^(cos theta ) lt ( sin theta )^(cos theta ) Statement II The equation e^(sin theta )-e^(-sin theta )=4 ha a unique solution.

Show that (1)/( cos theta ) -cos theta =tan theta .sin theta

For which value of an acute angle theta ,(i) ( cos theta )/( 1-sin theta ) +(cos theta )/( 1+sin theta ) =4 is true ? For which value of 0^(@) le theta le 90 ^(@) , above equation is not defined?

Prove that (sin theta -cos theta+1 )/( sin theta + cos theta -1) =(1)/( sec theta -tan theta ) [use the identity sec ^(2) theta =1 +tan ^(2) theta ]

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

Vertices of a variable triangle are (3, 4), (5 cos theta, 5 sin theta) and (5 sin theta, -5 cos theta) , where theta in R . Locus of its orthocentre is

2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta) is equal to

The value of 3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta is where theta in ((pi)/(4),(pi)/(2))