Home
Class 11
MATHS
Solve tan2x=-cot(x+(pi)/(3))....

Solve `tan2x=-cot(x+(pi)/(3))`.

Text Solution

Verified by Experts

The correct Answer is:
`x = n pi + (5pi)/(5)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT GUJARATI|Exercise EXERCISE 3.1|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT GUJARATI|Exercise EXERCISE 3.2|10 Videos
  • STRAIGHT LINES

    NCERT GUJARATI|Exercise Miscellaneous Exercise on Chapter 10|24 Videos

Similar Questions

Explore conceptually related problems

Prove that : cot^(2)((pi)/(6))+cosec((5pi)/(6))+3tan^(2)((pi)/(6))=6

Prove that cos((3pi)/(2)+x)cos(2pi+x)[cot((3pi)/(2)-x)+cot(2pi+x)]=1

Prove that cos((3pi)/(2)+x)cos(2pi+x).{cot((3pi)/(2)-x)+cot(2pi+x)}=1

If tanx=-(4)/(3), (3pi)/(2) lt x lt 2pi , find the value of 9sec^(2)x-4 cot x .

Sovle tan^(-1)2x+tan^(-1)3x=(pi)/4

The expression (tan(x-pi/2)cos((3pi)/2+x)-sin^3((7pi)/2-x))/(cos(x-pi/2)tan((3pi)/2+x) is equal to

f(x)= |(sin x,cos x),(tan x,cot x)| then f'((pi)/(4)) = …….

cos 2x- 3 cos x + 1=(1)/((cot 2 x - cot x)sin (x-pi)) holds , if

The lim_(xto(pi)/2)(cot x-cosx)/((pi-2x)^(3)) equals