Home
Class 12
MATHS
Show that(i) sin^(-1)(2xsqrt(1-x^2))=2si...

Show that(i) `sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2))`(ii) `sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1`

Text Solution

Verified by Experts

The correct Answer is:
(i) `2sin^(-1)x` (ii) `2cos^(-1)x`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT GUJARATI|Exercise EXERCISE 2.1|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT GUJARATI|Exercise EXERCISE 2.2|21 Videos
  • INTEGRALS

    NCERT GUJARATI|Exercise EXERCISE 7.12|41 Videos
  • LINEAR PROGRAMMING

    NCERT GUJARATI|Exercise MISCELLANEOUS EXERCISE|6 Videos

Similar Questions

Explore conceptually related problems

Show that, sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/sqrt2lexle1/sqrt2

Show that, sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/sqrt2lexle1

Prove the following : sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,x in[-1/sqrt2,1/sqrt2]

cos^(- 1)x=2sin^(- 1)sqrt((1-x)/2)=2cos^(- 1)sqrt((1+x)/2)

cos^(-1)(sqrt3/2)+2sin^(-1)(sqrt3/2) is _____

sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x is true if x in a. [0,\ 1]\ b. [-1/(sqrt(2)),1/(sqrt(2))] c. [-1/2,1/2] d. [-(sqrt(3))/2,(sqrt(3))/2]

Find the sum of the infinte series sin^(-1)(1/sqrt(2))+sin^(-1)((sqrt(2)-1)/(sqrt(6)))+....sin^(-1)((sqrt(n)-sqrt(n-1))/(sqrt(n(n+1))))

Prove that : tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=pi/4-1/2cos^(-1)x,-1/sqrt2lexle1

sin^(-1)(1-x)-2sin^(-1)x=pi/2 , then x is equal to

If x in((1)/(sqrt2)1). Differentiate tan^(-1)(sqrt(1-x^(2))/(x)) w.r. t. cos^(-1)(2xsqrt(1-x^(2))).