Home
Class 12
MATHS
If A=[alphabetagamma-alpha] is such that...

If `A=[alphabetagamma-alpha]` is such that `A^2=I` , then `1+alpha^2+betagamma=0` (b) `1-alpha^2+betagamma=0` (c) `1-alpha^2-betagamma=0` (d) `1+alpha^2-betagamma=0`

A

`I+alpha^(2)+beta gamma=0`

B

`I-alpha^(2)+beta gamma=0`

C

`I-alpha^(2)-beta gamma=0`

D

`I+alpha^(2)-beta gamma=0`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NCERT GUJARATI|Exercise EXERCISE 3.4|18 Videos
  • LINEAR PROGRAMMING

    NCERT GUJARATI|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROBABILITY

    NCERT GUJARATI|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 13|18 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(alpha,beta),(gamma,-alpha):}] is such that A^(2)=I , then ……

If cot (alpha + beta )=0 , then sin(alpha+2beta ) =

If alpha, beta, gamma are the roots of the cubic x^(3)-px^(2)+qx-r=0 Find the equations whose roots are (i) beta gamma +1/(alpha), gamma alpha+1/(beta), alpha beta+1/(gamma) (ii) (beta+gamma-alpha),(gamma+alpha-beta),(alpha+beta-gamma) Also find the valueof (beta+gamma-alpha)(gamma+alpha-beta)(alpha+beta-gamma)

Let -pi/6 beta_1 and alpha_2 >beta_2 , then alpha_1 + beta_2 equals

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 The value of |{:(alpha, beta ,gamma),(gamma,alpha ,beta),(beta,gamma ,alpha):}| is equal to

Prove that |{: (1,alpha,alpha^2), (alpha,alpha^2, 1),(alpha^2, 1,alpha) :}|=-(1-alpha^3)^2

If cosalpha+cosbeta=0=sinalpha+sinbeta, then prove that cos2alpha+cos2beta=-2cos(alpha+beta) .

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 . If a = alpha^(2)+beta^(2)+gamma^(2),b= alphabeta+betagamma+gammaalpha the value of |{:(a,b,b),(b,a,b),(b,b,a):}| is

if alpha,beta,gamma are the roots of x^3-3x^2 +3x + 7 =0 then (alpha-1)/(beta-1)+(beta-1)/(gamma-1)+(gamma-1)/(alpha-1)

If S_r = alpha^r + beta^r + gamma^r then show that |[S_0,S_1,S_2],[S_1,S_2,S_3],[S_2,S_3,S_4]| = (alpha-beta)^2(beta-gamma)^2(gamma-alpha)^2