Home
Class 12
MATHS
Evalute the determinants in queations 1 ...

Evalute the determinants in queations 1 and 2 :
If `A=[{:(1,2),(4,2):}]`, then show that |2A|=4|A|.

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT GUJARATI|Exercise EXERCISE 4.2|16 Videos
  • DETERMINANTS

    NCERT GUJARATI|Exercise EXERCISE 4.3|7 Videos
  • DETERMINANTS

    NCERT GUJARATI|Exercise Miscellaneous Exercises on Chapter 4|18 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT GUJARATI|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 5|23 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT GUJARATI|Exercise MISCELLANEOUS EXERCISE|18 Videos

Similar Questions

Explore conceptually related problems

If A = [{:(1,2),(4,2):}] then show that [2A] = 4[A]

If A=[{:(1,2,3),(3,-2,1),(4,2,1):}] , then show that A^(3)-23A-40I=O .

Evaluate the determinants below in examples number 1 and 2 |{:(2,4),(-5,-1):}|

If A=[{:(1,0,1),(0,1,2),(0,0,4):}] then show that [3A]=27[A]

If A=[{:(1,2),(4,1):}] , find A^(2)+2A+7I .

If A=(1)/(3)[{:(1,2,2),(2,1,-2),(-2,2,-1):}] then show that A A'=A'A=I.

If tanA=(1)/(7) and tanB=(1)/(3) then show that cos(2A)=sin(4B) .

There are two values of a which makes determinant Delta=|{:(1,-2,5),(2,a,-1),(0,4,2a):}|=86 , then sum of these number is "........."

Find the value of the determinant |{:(1,2,4),(3,4,9),(2,-1,6):}|

For the matrix A=[{:(1,2,2),(2,1,2),(2,2,1):}] . Show that A^2-4A-5I=0 Hence find A^(-1)