Home
Class 12
MATHS
By using properties of determinants. Sho...

By using properties of determinants. Show that:(i) `|1a a^2 1bb^2 1cc^2|=(a-b)(b-c)(c-a)`(ii) `|1 1 1a b c a^3b^3c^3|=(a-b)(b-c)(c-a)(a+b+c)`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT GUJARATI|Exercise EXERCISE 4.3|7 Videos
  • DETERMINANTS

    NCERT GUJARATI|Exercise EXERCISE 4.4|5 Videos
  • DETERMINANTS

    NCERT GUJARATI|Exercise EXERCISE 4.1|8 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT GUJARATI|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 5|23 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT GUJARATI|Exercise MISCELLANEOUS EXERCISE|18 Videos

Similar Questions

Explore conceptually related problems

Using the properties of determinants, prove the following |{:((a+b)^2,ca,cb),(ca,(b+c)^2,ab),(bc,ab,(c+a)^2):}|=2abc(a+b+c)^3

Using the properties of determinants, prove the following |{:(a,b-c,c+b),(a+c,b,c-a),(a-b,b+a,c):}|=(a+b+c)(a^2+b^2+c^2)

Using properties of determinants in Exercise 11 to 15 prove that |{:(3a,-a+b,-a+c),(-b+a,3b,-b+c),(-c+a,-c+b,3c):}|=3(a+b+c)(ab+bc+ca)

Prove that: {:|(1,a, a^2-bc), (1,b,b^2-ca),(1,c,c^2-ab)|:}=0

Using the properties of determinants, prove the following |{:(a^2,b^2,c^2),((a+1)^2,(b+1)^2,(c+1)^2),((a-1)^2,(a-1)^2,(c-1)^2):}|=4|{:(a^2,b^2,c^2),(a,b,c),(1,1,1):}|

Using the property of determinants andd without expanding in following exercises 1 to 7 prove that |{:(1,1,1),(a,b,c),(a^3,b^3,c^3):}|=(a-b)(b-c)(c-a)(a+b+c)

Using the properties of determinants in Exercise 1 to 6, evaluate |{:(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b):}|

Using the properties of determinants, prove the following |{:((b+c)^2,a^2,a^2),(b^2,(c+a)^2,b^2),(c^2,c^2,(a+b)^2):}|=2abc(a+b+c)^3

Using the properties of determinants, prove the following It 2s=a+b+c then |{:(a^2,(s-a)^2,(s-a)^2),((s-b)^2,b^2,(s-b)^2),((s-c)^2,(s-c)^2,c^2):}|=2s^3(s-a)(s-b)(s-c)

Using the property of determinants andd without expanding in following exercises 1 to 7 prove that |{:(1,a,a^2),(1,b,b^2),(1,c,c^2):}|=(a-b)(b-c)(c-a)