Home
Class 12
MATHS
One factor of |(a^(2) + x,ab,ac),(ab,b^(...

One factor of `|(a^(2) + x,ab,ac),(ab,b^(2) + x,cb),(ca,cb,c^(2) + x)|`, is

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT GUJARATI|Exercise EXERCISE 4.3|7 Videos
  • DETERMINANTS

    NCERT GUJARATI|Exercise EXERCISE 4.4|5 Videos
  • DETERMINANTS

    NCERT GUJARATI|Exercise EXERCISE 4.1|8 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT GUJARATI|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 5|23 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT GUJARATI|Exercise MISCELLANEOUS EXERCISE|18 Videos

Similar Questions

Explore conceptually related problems

The determinant Delta=|{:(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2)):}| is divisible by

If Deltan=|{:(a^(2)+n,ab,ac),(ab,b^(2)+n,bc),(ac,bc,c^(2)+n):}|,n in N and the equation x^(3)-lambdax^(2)+11x-6=0 has roots a,b,c and a,b,c are in AP. The value of (Delta2_(n))/(Delta_(n)) is

If Deltan=|{:(a^(2)+n,ab,ac),(ab,b^(2)+n,bc),(ac,bc,c^(2)+n):}|,n in N and the equation x^(3)-lambdax^(2)+11x-6=0 has roots a,b,c and a,b,c are in AP. The value of sum_(r=1)^(30)((27Delta_(r)-Delta3_(r))/(27r^(2))) is

Using the property of determinants andd without expanding in following exercises 1 to 7 prove that |{:(a^2+1,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1):}|=1+a^2+b^2+c^2

Without expanding the determinant, prove that {:[( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) ]:} ={:[( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) ]:}

Using the property of determinants andd without expanding in following exercises 1 to 7 prove that |{:(-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2):}|=4a^2b^2c^2

Prove that |{:(a^2,bc,ac+c^2),(a^2+ab,b^2,ac),(ab,b^2+bc,c^2):}|=4a^2b^2c^2

Using the properties of determinants, prove the following |{:((a+b)^2,ca,cb),(ca,(b+c)^2,ab),(bc,ab,(c+a)^2):}|=2abc(a+b+c)^3

The determinant |{:(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-a,ab-a^2):}| equals …….

Prove that: {:|(1,a, a^2-bc), (1,b,b^2-ca),(1,c,c^2-ab)|:}=0