Home
Class 12
MATHS
y=tan^(-1)""(3x-x^(3))/(1-3(x^2)),-(1)/(...

`y=tan^(-1)""(3x-x^(3))/(1-3(x^2)),-(1)/(sqrt(3))ltxlt(1)/(sqrt(3))`

Text Solution

Verified by Experts

The correct Answer is:
`(3)/(1+x^(2))`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT GUJARATI|Exercise EXERCISE 5.4|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT GUJARATI|Exercise EXERCISE 5.5|18 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT GUJARATI|Exercise EXERCISE 5.2|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT GUJARATI|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NCERT GUJARATI|Exercise Miscellaneous Exercises on Chapter 4|18 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) in the following: y= tan^(-1) ((3x-x^(3))/(1-3x^(2))), |x| < (1)/(sqrt3)

Write the following functions in the simplest form : tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2))),agt0,(-a)/sqrt3ltxlta/sqrt3

Prove that, tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt1/sqrt3

Prove that : tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=pi/4+1/2cos^(-1)x^(2) .

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x|<1/(sqrt(3)) . Then a value of y is : (1) (3x-x^3)/(1-3x^2) (2) (3x+x^3)/(1-3x^2) (3) (3x-x^3)/(1+3x^2) (4) (3x+x^3)/(1+3x^2)

Verify whether the following are zeroes of the polynomial, indicated against them : p(x) = 3x^(2) -1, x = -(1)/(sqrt(3)), (2)/(sqrt(3))

(x+1) sqrt(2x^(2)+3)