Home
Class 12
MATHS
y = Ax : xy' = y (x ne 0)...

`y = Ax : xy' = y (x ne 0)`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT GUJARATI|Exercise EXERCISE - 9.3|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT GUJARATI|Exercise EXERCISE - 9.4|23 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT GUJARATI|Exercise EXERCISE - 9.1|12 Videos
  • DETERMINANTS

    NCERT GUJARATI|Exercise Miscellaneous Exercises on Chapter 4|18 Videos
  • INTEGRALS

    NCERT GUJARATI|Exercise EXERCISE 7.12|41 Videos

Similar Questions

Explore conceptually related problems

x(dy)/(dx) + y - x + xy cot x = 0 (x ne 0)

y = x sin x : xy' = y + x sqrt(x^(2) - y^(2))(x ne 0 and x gt y or x lt -y)

xy = log y + C : y' = (y^(2))/(1 - xy)(xy ne 1)

Solve for x and y : (x, y ne 0) (2)/(x)+(3)/(y)=17, (3)/(x)+(2)/(y)=18

Solve for x and y : (x, y ne 0) (10)/(2x+y)+(3)/(2x-y)=3, (15)/(2x+y)+(9)/(2x-y)=6

Find the particular solution of the differential equation (dy)/(dx) + y cot x = 2x + x^(2) cot x( x ne 0) given that y = 0 when x = (pi)/(2) .

Find a particular solution of the differential equation (dy)/(dx) + y cot x = 4x cosec x ( x ne 0) , given that y = 0 when x = (pi)/(2) .

y = sqrt(a^(2) - x^(2)) x ne (-a, a) : x + y (dy)/(dx) = 0(y ne 0)

y = sqrt(1 + x^(2)) : y' = (xy)/(1 + x^(2))

Find the general solution of the differential equation x (dy)/(dx) + 2y = x^(2)(x ne 0) .