Home
Class 12
MATHS
x + y = tan^(-1)y : y^(2)y' + y^(2) + 1 ...

`x + y = tan^(-1)y : y^(2)y' + y^(2) + 1 = 0`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT GUJARATI|Exercise EXERCISE - 9.3|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT GUJARATI|Exercise EXERCISE - 9.4|23 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT GUJARATI|Exercise EXERCISE - 9.1|12 Videos
  • DETERMINANTS

    NCERT GUJARATI|Exercise Miscellaneous Exercises on Chapter 4|18 Videos
  • INTEGRALS

    NCERT GUJARATI|Exercise EXERCISE 7.12|41 Videos

Similar Questions

Explore conceptually related problems

Prove that the centres of the circle x^(2) + y^(2) - 4x - 2y + 4 = 0, x^(2) + y^(2) - 2x - 4y + 1 = 0 and x^(2) + y^(2) + 2x - 8y + 1 = 0 are collinear. More over prove that their radii are in geometric pregression.

If y= (tan^(-1) x)^(2) show that (x^(2) + 1)^(2) y_(2) + 2x (x^(2) + 1)y_(1) = 2

Show that the general solution of the differential equation (dy)/(dx) + (y^(2) + y + 1)/(x^(2) + x + 1) = 0 is given by ( x + y + 1) = A(1 - x - y - 2xy) , where A is parameter.

(1/y^2 \ ((cos(tan^(-1) y) + y sin(tan^(-1) y))/(cot(sin^(-1) y) + tan(sin^(-1) y)) )^2 + y^4)^(1//2) takes value

If y= a sin x + b cos x then, y^(2) + (y_(1))^(2) = ……. (a^(2) + b^(2) ne 0)

Find (dy)/(dx) when x and y are connected by the relation given: tan^(-1) (x^(2) + y^(2))=a

The point (1,2) lies inside the circle x^(2) + y^(2) - 2x + 6y + 1 = 0 .