Home
Class 12
MATHS
x (dy)/(dx) + 2y = x^(2)log x...

`x (dy)/(dx) + 2y = x^(2)log x`

Text Solution

Verified by Experts

The correct Answer is:
`y = (x^(2))/(16)(4 log|x| - 1) + Cx^(-2)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT GUJARATI|Exercise MISCELLANEOUS EXERCISE|18 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT GUJARATI|Exercise EXERCISE - 9.5|17 Videos
  • DETERMINANTS

    NCERT GUJARATI|Exercise Miscellaneous Exercises on Chapter 4|18 Videos
  • INTEGRALS

    NCERT GUJARATI|Exercise EXERCISE 7.12|41 Videos

Similar Questions

Explore conceptually related problems

x log x(dy)/(dx) + y = (2)/(x)log x

(dy)/(dx) + 3y = e^(-2x)

Find the general solution of the differential equation x (dy)/(dx) + 2y = x^(2)(x ne 0) .

(dy)/(dx) + (y)/(x) = x^(2)

Solve (dy)/(dx) + x sin 2y = x^(3) cos^(2) y

If y = sin ^(-1) (( 2^(x +1))/( 1 + 4 ^(x))) and (dy)/(dx) = (2 ^(x +1 ) log 2)/(f (x)) then f (0) = ____________.

For each of the differential equations given below, indicate its order and degree(if defined). (i) (d^(2)y)/(dx^(2))+ 5x((dy)/(dx))^(2) - 6y = log x (ii) ((dy)/(dx))^(3) - 4((dy)/(dx))^(2) + 7y = sin x (iii) (d^(4)y)/(dx^(4)) - sin ((d^(3)y)/(dx^(3)) = 0

If y= sin (sin x) then show that, (d^(2)y)/(dx^(2)) + (tan x) (dy)/(dx) + y cos^(2)x = 0

x^(2)(dy)/(dx) = x^(2) - 2y^(2) + xy