Home
Class 12
MATHS
x log x(dy)/(dx) + y = (2)/(x)log x...

`x log x(dy)/(dx) + y = (2)/(x)log x`

Text Solution

Verified by Experts

The correct Answer is:
`y log x = (-2)/(x)(1 + log |x|) + C`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT GUJARATI|Exercise MISCELLANEOUS EXERCISE|18 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT GUJARATI|Exercise EXERCISE - 9.5|17 Videos
  • DETERMINANTS

    NCERT GUJARATI|Exercise Miscellaneous Exercises on Chapter 4|18 Videos
  • INTEGRALS

    NCERT GUJARATI|Exercise EXERCISE 7.12|41 Videos

Similar Questions

Explore conceptually related problems

x (dy)/(dx) + 2y = x^(2)log x

y log y dx - x dy = 0

If y^(x)= e^(y-x) , then prove that (dy)/(dx)= ((1+ log y)^(2))/(log y)

The solution of (dy)/(dx)+(y)/(x)=(1)/((1+log x+log y)^(2)) is given by

If y = sin ^(-1) (( 2^(x +1))/( 1 + 4 ^(x))) and (dy)/(dx) = (2 ^(x +1 ) log 2)/(f (x)) then f (0) = ____________.

If x= e^((x)/(y)) , then prove that (dy)/(dx)= (x-y)/(x.log x)

Find (dy)/(dx) : x= e^(cos 2t) and y= e^(sin 2t) show that, (dy)/(dx)= (-y log x)/(x log y)

The solution of (dy)/(dx)=(x+y-1)+(x+y)/(log(x+y)), is given by

(d)/(dx). ((1)/(log|x|)) = …….