Home
Class 12
PHYSICS
Calculate the height of the potential ba...

Calculate the height of the potential barrier for a head on collision of two deuterons. (Hint: The height of the potential barrier is given by the Coulomb repulsion between the two deuterons when they just touch each other. Assume that they can be taken as hard spheres of radius 2.0 fm.)

Text Solution

Verified by Experts

360 KeV
Promotional Banner

Topper's Solved these Questions

  • NUCLEI

    NCERT GUJARATI|Exercise ADDITIONAL EXERCISES|9 Videos
  • NUCLEI

    NCERT GUJARATI|Exercise ADDITIONAL EXERCISES|9 Videos
  • MOVING CHARGES AND MAGNETISM

    NCERT GUJARATI|Exercise ADDITIONAL EXERCISES|17 Videos
  • RAY OPTICS AND OPTICAL INSTRUMENTS

    NCERT GUJARATI|Exercise EXERCISES|40 Videos

Similar Questions

Explore conceptually related problems

Consider the D–T reaction (deuterium–tritium fusion) ""_(1)^(2)H + ""_(1)^(3)H to ""_(2)^(4)He + n (a) Calculate the energy released in MeV in this reaction from the data: m (""_(1)^(2)H) = 2.014102u m(""_1^(3)H) = 3.016049 u (b) Consider the radius of both deuterium and tritium to be pproximately 2.0 fm. What is the kinetic energy needed to overcome the coulomb repulsion between the two nuclei? To what temperature must the gas be heated to initiate the reaction? (Hint: Kinetic energy required for one fusion event =average thermal kinetic energy available with the interacting particles = 2(3kT/2), k = Boltzman’s constant, T = absolute temperature.)

It is a common observation that rain clouds can be at about a kilometer altitude above the ground. (a) If a rain drop falls from such a height freely under gravity, what will be its speed? Also calculate in km/h (g = 10 m//s^(2) ). (b) A typical rain drop is about 4 mm diameter. Momentum is mass x speed in magnitude. Estimate its momentum when it hits ground. (c) Estimate the time required to flatten the drop. (d) Rate of change of momentum is force. Estimate how much force such a drop would exert on you. (e) Estimate the order of magnitude force on umbrella. Typical lateral separation between two rain drops is 5 cm. (Assume that umbrella is circular and has a diameter of 1 m and cloth is not pierced through.)

Two stars each of one solar mass (= 2 xx 10^(30) kg) are approaching each other for a head on collision. When they are a distance 10^9 km, their speeds are negligible. What is the speed with which they collide ? The radius of each star is 10^4 km. Assume the stars to remain undistorted until they collide. (Use the known value of G).

An accelration produces a narrow beam of protons, each having an initial speed of v_(0) . The beam is directed towards an initially uncharges distant metal sphere of radius R and centered at point O. The initial path of the beam is parallel to the axis of the sphere at a distance of (R//2) from the axis, as indicated in the diagram. The protons in the beam that collide with the sphere will cause it to becomes charged. The subsequentpotential field at the accelerator due to the sphere can be neglected. The angular momentum of a particle is defined in a similar way to the moment of a force. It is defined as the moment of its linear momentum, linear replacing the force. We may assume the angular momentum of a proton about point O to be conserved. Assume the mass of the proton as m_(P) and the charge on it as e. Given that the potential of the sphere increases with time and eventually reaches a constant velue. After a long time, when the potential of the sphere reaches a constant value, the trajectory of proton is correctly sketched as

An accelration produces a narrow beam of protons, each having an initial speed of v_(0) . The beam is directed towards an initially uncharges distant metal sphere of radius R and centered at point O. The initial path of the beam is parallel to the axis of the sphere at a distance of (R//2) from the axis, as indicated in the diagram. The protons in the beam that collide with the sphere will cause it to becomes charged. The subsequentpotential field at the accelerator due to the sphere can be neglected. The angular momentum of a particle is defined in a similar way to the moment of a force. It is defined as the moment of its linear momentum, linear replacing the force. We may assume the angular momentum of a proton about point O to be conserved. Assume the mass of the proton as m_(P) and the charge on it as e. Given that the potential of the sphere increases with time and eventually reaches a constant velue. One the potential of the sphere has reached its final, constant value, the minimum speed v of a proton along its trajectory path is given by

Consider a sphere of radius R with charge density distributed as : rho( r) =kr, r le R =0 for r gt R (a) Find the electric field at all points r. (b) Suppose the total charge on the sphere is 2e where e is the electron charge. Where can two protons be embedded such that the force on each of them is zero. Assume that the introduction of the proton does not alter the negative charge distribution.

Two point masses m_1 and m_2 are connected by a spring of natural length l_0 . The spring is compressed such that the two point masses touch each other and then they are fastened by a string. Then the system is moved with a velocity v_0 along positive x-axis. When the system reached the origin, the string breaks (t=0) . The position of the point mass m_1 is given by x_1=v_0t-A(1-cos omegat) where A and omega are constants. Find the position of the second block as a function of time. Also, find the relation between A and l_0 .

Two stars bound together by gravity orbit othe because of their mutual attraction. Such a pair of stars is referred to as a binary star system. One type of binary system is that of a black hole and a companion star. The black hole is a star that has cullapsed on itself and is so missive that not even light rays can escape its gravitational pull therefore when describing the relative motion of a black hole and companion star, the motion of the black hole can be assumed negligible compared to that of the companion. The orbit of the companion star is either elliptical with the black hole at one of the foci or circular with the black hole at the centre. The gravitational potential energy is given by U=-GmM//r where G is the universal gravitational constant, m is the mass of the companion star, M is the mass of the black hole, and r is the distance between the centre of the companion star and the centre of the black hole. Since the gravitational force is conservative. The companion star and the centre of the black hole, since the gravitational force is conservative the companion star's total mechanical energy is a constant. Because of the periodic nature of of orbit there is a simple relation between the average kinetic energy ltKgt of the companion star Two special points along the orbit are single out by astronomers. Parigee isthe point at which the companion star is closest to the black hole, and apogee is the point at which is the farthest from the black hole. Q. For circular orbits the potential energy of the companion star is constant throughout the orbit. if the radius of the orbit doubles, what is the new value of the velocity of the companion star?

Two stars bound together by gravity orbit othe because of their mutual attraction. Such a pair of stars is referred to as a binary star system. One type of binary system is that of a black hole and a companion star. The black hole is a star that has cullapsed on itself and is so missive that not even light rays can escape its gravitational pull therefore when describing the relative motion of a black hole and companion star, the motion of the black hole can be assumed negligible compared to that of the companion. The orbit of the companion star is either elliptical with the black hole at one of the foci or circular with the black hole at the centre. The gravitational potential energy is given by U=-GmM//r where G is the universal gravitational constant, m is the mass of the companion star, M is the mass of the black hole, and r is the distance between the centre of the companion star and the centre of the black hole. Since the gravitational force is conservative. The companion star and the centre of the black hole, since the gravitational force is conservative the companion star's total mechanical energy is a constant. Because of the periodic nature of of orbit there is a simple relation between the average kinetic energy ltKgt of the companion star Two special points along the orbit are single out by astronomers. Parigee isthe point at which the companion star is closest to the black hole, and apogee is the point at which is the farthest from the black hole. Q. Which of the following prevents the companion star from leaving its orbit and falling the black hole?

NCERT GUJARATI-NUCLEI-EXERCISE
  1. Obtain the binding energy (in MeV) of a nitrogen nucleus (""(7)^(14)N)...

    Text Solution

    |

  2. Obtain the binding energy of the nuclei ""(26)^(26)Fe and ""(83)^(209)...

    Text Solution

    |

  3. A given coin has a mass of 3.0 g. Calculate the nuclear energy that wo...

    Text Solution

    |

  4. Write nuclear reaction equations for {:((i) a-"decay of " (88)^(226)...

    Text Solution

    |

  5. A radioactive isotope has a half-life of T years. How long will it tak...

    Text Solution

    |

  6. The normal activity of living carbon-containing matter is found to be ...

    Text Solution

    |

  7. Obtain the amount of ""(27)^(60)Co necessary to provide a radioactive ...

    Text Solution

    |

  8. The half-life of ""(38)^(90)Sr is 28 years. What is the disintegration...

    Text Solution

    |

  9. Obtain approximately the ratio of the nuclear radii of the gold isotop...

    Text Solution

    |

  10. Find the Q-value and the kinetic energy of the emitted a-particle in t...

    Text Solution

    |

  11. The radionuclide ""^(11)C decays according to ""(6)^(11)C to ""(5)^(...

    Text Solution

    |

  12. The nucleus ""(10)^(23)Ne decays by beta^(-)– mission. Write down the ...

    Text Solution

    |

  13. The Q value of a nuclear reaction A + b to C + d is defined by Q =...

    Text Solution

    |

  14. Suppose, we think of fission of a ""(26)^(56)Fe nucleus into two equal...

    Text Solution

    |

  15. The fission properties of ""(94)^(239)Pu are very similar to those of ...

    Text Solution

    |

  16. A 1000 MW fission reactor consumes half of its fuel in 5.00 y. How muc...

    Text Solution

    |

  17. How long can an electric lamp of 100W be kept glowing by fusion of 2.0...

    Text Solution

    |

  18. Calculate the height of the potential barrier for a head on collision ...

    Text Solution

    |

  19. From the relation R = R0A^(1//3), where R0 is a constant and A is the ...

    Text Solution

    |

  20. For the b+ (positron) emission from a nucleus, there is another compet...

    Text Solution

    |