Home
Class 12
MATHS
If two curves c(1);||x|-|y||=1 and c(2):...

If two curves `c_(1);||x|-|y||=1` and `c_(2):(x^(2))/(2)+(y^(2))/(b^(2))=1` intersect at six points on the `xy` plane and `e` is the eccentricity of `C_(2)` then the value of `(8)/(e^(2))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If e be the eccentricity of ellipse 3x2+2xy+3y^(2)=1 then 8e^(2) is

If the curves (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and (x^(2))/(c^(2))+(y^(2))/(d^(2))=1 intersect orthogonally, then

If curves (x^2)/(a^2)-(y^2)/(b^2)=1 and xy= c^2 intersect othrogonally , then

y = c_(1)e^(3x) +c_(2)e^(2x)

y = c_(1) e^(2x) +c_(2)e^(-2x)

If e and e_(1) are the eccentricities of xy=c^(2),x^(2)-y^(2)=a^(2) then e^(4)+e_(1)^(4)=

Let r be a positive constant.If two curves C_(1):y=(2x^(2))/(x^(2)+1) and C_(2):y=sqrt(r^(2)-x^(2)) intersects orthogonally then r cannot be

Let r be a positive constant.If two curves C_(1):y=(2x^(2))/(x^(2)+1) and C_(2):y=sqrt(r^(2)-x^(2)) intersect orthogonally then r cannot be