Home
Class 12
MATHS
If a,b,c are non-zero real numbers then ...

If `a,b,c` are non-zero real numbers then `D=|[b^2 c^2, bc, b+c] , [c^2a^2, ca, c+a] , [a^2b^2, ab, a+b]|=` (A) abc (B) `a^2 b^2 c^2` (C) bc+ca+ab (D) 0

Promotional Banner

Similar Questions

Explore conceptually related problems

|[b^2c^2,bc,b+c] , [c^2a^2,ca,c+a] , [a^2b^2,ab,a+b]|=0

If a,b,&c are nonzero real numbers,then det[[b^(2)c^(2),bc,b+cc^(2)a^(2),ca,c+aa^(2)b^(2),ab,a+b]] is equal to

If a,b,c are non-zero real numbers then D=det[[b^(2)c^(2),bc,b+cc^(2)a^(2),ca,c+aa^(2)b^(2),ab,a+b]]=(A)abc(B)a^(2)b^(2)c^(2)(C)bc+ca+ab(D)0,

|[b^(2)c^(2),bc,a-c],[c^(2)a^(2),ca,b-c],[a^(2)b^(2),ab,0]|=?

If a,b,c are non-zero real number such that |(bc,ca,ab),(ca,ab,bc),(ab,bc,ca)|=0, then

Prove that : |{:(b^(2)c^(2),bc, b+c),(c^(2)a^(2),ca, c+a),(a^(2)b^(2),ab, a+b):}|=0

If a,b,c are non-zero real numbers such that 3(a^(2)+b^(2)+c^(2)+1)=2(a+b+c+ab+bc+ca) then a,b,c are in

Prove that |[(b+c)^2, a^2, bc],[(c+a)^2, b^2, ca],[(a+b)^2, c^2, ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)