Home
Class 9
MATHS
The volume of a cylinder of radius r i...

The volume of a cylinder of radius `r` is `1/4` of the volume of a rectangular box with a square base of side length `xdot` If the cylinder and the box have equal heights, what is `r` in terms of `x ?` (a) `(x^2)/(2pi)` (b) `x/(2sqrt(pi))` (c) `(sqrt(2x))/pi` (d) `pi/(2sqrt(x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The volume of a cylinder of radius r is (1)/(4) of the volume of a rectangular box with a square base of side length x .If the cylinder and the box have equal heights,what is r in terms of x?(x^(2))/(2 pi)( b) (x)/(2sqrt(pi)) (c) (sqrt(2x))/(pi) (d) (pi)/(2sqrt(x))

The height h of cylinder equals the circumference of the cylinder. In terms of h , what is the volume of the cylinder? (a) (h^3)/(4pi) (b) (h^2)/(2pi)\ (c) (h^3)/2 (d) pih^3

The height h of cylinder equals the circumference of the cylinder.In terms of h what is the volume of the cylinder? (h^(3))/(4 pi) (b) (h^(2))/(2 pi)(c)(h^(3))/(2) (d) pi h^(3)

The value of the definite integral int_(0)^(bar(2))sqrt(tan x)dx is sqrt(2)pi(b)(pi)/(sqrt(2))2sqrt(2)pi(d)(pi)/(2sqrt(2))

sin^(-1)(sin5)> x^2-4x hold if (a) x=2-sqrt(9-2pi) (b) x=2+sqrt(9-2pi) (c) x >2+sqrt(9-2pi) (d) x in (2-sqrt(9-2pi),2+sqrt(9-2pi))

lim_(xrarr1^(-)) (sqrtpi-sqrt(2sin^-1x))/sqrt(1-x)= (A) sqrt(2/pi) (B) sqrt(pi/2) (C) 1/pi (D) sqrt(1/pi)

If f(x)=sqrt(1+cos^(2)(x^(2))), then f'((sqrt(pi))/(2)) is (sqrt(pi))/(6)(b)-sqrt(pi/6)1/sqrt(6)(d)pi/sqrt(6)

int_0^(4/pi) (3x^2sin(1/x)-xcos(1/x))dx= (A) (8sqrt(2))/pi^3 (B) (32sqrt(2))/pi^3 (C) (24sqrt(2))/pi^3 (D) sqrt(2048)/pi^3

int_0^(4/pi) (3x^2sin(1/x)-xcos(1/x))dx= (A) (8sqrt(2))/pi^3 (B) (32sqrt(2))/pi^3 (C) (24sqrt(2))/pi^3 (D) sqrt(2048)/pi^3