Home
Class 10
MATHS
Prove: (1-cos^2 A)cdot sec^2B + tan^2B...

Prove:
`(1-cos^2 A)cdot sec^2B + tan^2B (1-sin^2A) = sin^2A+tan^2B`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove : (1-cos^(2)A) *sec ^(2)B + tan^(2)B (1- sin^(2)A) = sin^(2) A + tan^(2)B

If cot B= 12/5 Prove that tan^2B-sin^2B=sin^4B.sec^2B .

Prove that (sec A + cos A) (sec A - cos A) = tan^2A+sin^2A .

Prove that (i) (sin^(2)A cos^(2)B - cos^(2)A sin^(2) B )=(sin^(2)A- sin^(2)B) (ii) (tan^(2)A sec^(2)B - sec^(2)A tan^(2)B)=(tan^(2)A- tan^(2)B)

If cos^2 A - sin^2 A = tan^2 B then prove that 2 cos^2 B -1 = tan^2 A

If cos^2 A - sin^2 A = tan^2 B then prove that 2 cos^2 B -1 = tan^2 A

Prove: tan^2Asec^2B-sec^2Atan^2B=tan^2A-tan^2B

Prove: (sec A-tan A)/(sec A+tan A)=(cos^(2)A)/((1+sin A)^(2))

Show that tan^2A-tan^2B=(sin^2A-sin^2B)/(cos^2Acos^2B)

Prove: tan^(2)A sec^(2)B-sec^(2)A tan^(2)B=tan^(2)A-tan^(2)B