Home
Class 11
MATHS
If (a+b)^2/(4ab)=sin^2theta, then...

If `(a+b)^2/(4ab)=sin^2theta`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If ((a+b)^(2))/(4ab)=sin^(2)theta, then

The equation (a+b)^(2)=4ab sin^(2)theta is true if and only if

If (cos^(2) theta)/(a) = (sin^(2) theta)/(b) then (cos^(4) theta)/(a) + (sin^(4) theta)/(b) =

If (cos^(2)theta)/(a)=(sin^(2)theta)/(b) then (cos^(4)theta)/(a)+(sin^(4)theta)/(b)=0

if (cos^(2)theta)/(a)=(sin^(2)theta)/(b) then (cos^(4)theta)/(a)+(sin^(4)theta)/(b)=?

Suppose a and b are two unit vectors and theta is acute angle between them. If abs(a-b)^(2)=4sin^(2)(alphatheta) , then 8alpha^(2)= _______

Show that (a+b)^2=4ab sin^2theta is possible only when a= b.

Prove that the equation : (a+b)^2= 4ab sin^2 theta is possible only when a = b.

If a+b = 3- cos 4 theta and a-b =4 sin 2theta , then ab is always less than or equal to

If a+b = 3- cos 4 theta and a-b =4 sin 2theta , then ab is always less than or equal to