Home
Class 12
MATHS
For a in [pi , 2 pi] and n in Z the cr...

For ` a in [pi , 2 pi]` and `n in Z` the critical points of g
`f(x) = 1/3 sin a tan ^3 "" x + (sin a-1)tan x + sqrt(a-2)/(8-a)` are

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = tan x, x in (-pi/2,pi/2)and g(x) = sqrt(1-x^2) then g(f(x)) is

If x ne n pi, x ne (2n+1) (pi)/(2) n in Z, then : sin^(-1) ((sin^(-1) (cos x) + cos ^(-1) (sin x))/(tan^(-1) (cot x) + cot^(-1) (tan x )))=

If f(x ) = (sin^(2)x)/(1+cot x) + (cos^(2))/(1+tan x) then f((pi)/(4)) is

If tan (cot x) = cot (tan x) , prove that : sin 2x = 4/((2n+1) pi)

lim_ (x rarr (pi) / (2)) ((1-tan ((x) / (2))) (1-sin x)) / ((1 + tan ((x) / (2))) ((pi-2x) ^ (3)))

f(x)=tan x,x in(-(pi)/(2),(pi)/(2)) and g(x)=sqrt(1-x^(2)) then g(f(x)) is

If x in ( - pi/2, pi/2) , then the value of tan^(-1) ((tan x)/4) + tan^(-1) ((3 sin 2x)/(5 + 3 cos 2x)) is

If x in ( - pi/2, pi/2) , then the value of tan^(-1) ((tan x)/4) + tan^(-1) ((3 sin 2x)/(5 + 3 cos 2x)) is