Home
Class 12
MATHS
माना g(x) = 1+x - [x]और f(x) = {{:(-1, x...

माना g(x) = 1+x - [x]और `f(x) = {{:(-1, x lt 0 ), (0, x = 0 ), (1, x gt 0 ):}` तब x के सभी मानों के लिए `f(g(x) ) ` का मान है:

Promotional Banner

Similar Questions

Explore conceptually related problems

Find lim_(x to 0) f(x) , where f(x) = {{:(x -1,x lt 0),(0,x = 0),(x =1,x gt 0):}

Find lim_(x to 0) f(x) , where f(x) = {{:(x -1,x lt 0),(0,x = 0),(x =1,x gt 0):}

If f(x) = {(x-1,",", x lt 0),(1/4,",",x = 0),(x^2,",",x gt 0):}

If f(x) = {(x-1,",", x lt 0),(1/4,",",x = 0),(x^2,",",x gt 0):}

Let g(x)=1+x-[x] and f(x)=={(-1, x lt0),(0, x=0),(1, x gt 0):} Then for all x find f(g(x))

Let f(x)={:{(x+1,x gt 0),(x-1,x lt 0):}

Let g(x)=1+x-[x] and f(x)={{:(-1",", x lt 0),(0",",x=0),(1",", x gt 0):} , then for all x , f[g(x)] is equal to

Let g(x)=1+x-[x] and f(x)={{:(-1",", x lt 0),(0",",x=0),(1",", x gt 0):} , then for all x , f[g(x)] is equal to

If f(x)={{:(-1, x lt 0),(0, x=0 and g(x)=x(1-x^(2))", then"),(1, x gt 0):}