Home
Class 12
MATHS
The domain of the function f(x)=loge {sg...

The domain of the function `f(x)=log_e {sgn(9-x^2)}+sqrt([x]^3-4[x])`(where [] represents the greatest integer function is

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=log_(e){sgn(9-x^(2))}+sqrt([x]^(3)-4[x]) (where Il represents the greatest integer function is

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

The domain of definition of the function f(x)=(1)/(sqrt(x-[x])), where [.] denotes the greatest integer function,is:

The domain of the function f(x)=(log_(4)(5-[x-1]-[x]^(2)))/(x^(2)+x-2) is (where [x] denotes greatest integer function)

The domain of the function f(x)=(log_(4)(5-[x-1]-[x]^(2)))/(x^(2)+x-2) is (where [x] denotes greatest integer function)