Home
Class 12
MATHS
The function f(x)=cos^(-1)((2[|sinx|+|co...

The function `f(x)=cos^(-1)((2[|sinx|+|cosx|])/(sin^2x+2sinx+11/4))` is defined if x belongs to (where [.] represents the greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

f:(2,3)->(0,1) defined by f(x)=x-[x] ,where [dot] represents the greatest integer function.

f:(2,3)rarr(0,1) defined by f(x)=x-[x], where [.] represents the greatest integer function.

f(x)=[abs(sinx)+abs(cosx)] , where [*] denotes the greatest integer function.

f(x)=[sinx] where [.] denotest the greatest integer function is continuous at:

f(x)=[sinx] where [.] denotest the greatest integer function is continuous at:

Discuss continuity of f(x) =[sin x] -[cos x] at x=pi//2, where [.] represent the greatest integer function .

The range of the function f(x)=[sinx+cosx] (where [x] denotes the greatest integer function) is

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is