Home
Class 12
MATHS
Let I Arg((z-8i)/(z+6))=pmpi/2 II: Re...

Let I `Arg((z-8i)/(z+6))=pmpi/2`
II: Re `((z-8i)/(z+6))=0`
Show that locus of z in I or II lies on `x^2+y^2+6^x – 8^y=0` Hence show that locus of z can also be represented by `(z-8i)/(z+6)+(bar(z)-8i)/(barz+6)=0` Further if locus of z is expressed as |z + 3 – 4i| = R, then find R.

Promotional Banner

Similar Questions

Explore conceptually related problems

If |(z-i)/(z+i)|=1 , then the locus of z is

If Im((z-i)/(2i))=0 then the locus of z is

If |(z-i)/(z+i)|=1 then the locus of z is

If Re ((z+3)/(z-2i))=0 then the locus of z = x +iy is

If "Re"((z-8i)/(z+6))=0 , then lies on the curve

If "Re"((z-8i)/(z+6))=0 , then z lies on the curve

If |z+i|^2−|z−i|^2 =4 then the locus of z is

If |z+i|^2−|z−i|^2 =3 then the locus of z is

If (4+i)(z+bar(z))-(3+i)(z-bar(z))+26i = 0 , then the value of |z|^(2) is