Home
Class 12
MATHS
The solution of (81)^(sin^(2)x) +(81)^(c...

The solution of `(81)^(sin^(2)x) +(81)^(cos^(2)x)=30` in `[0, pi//2]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solutions of (81)^(sin ^2 x) + (81)^( cos^2x )=30 for x in [0,2pi] is equal to…………………

The number of roots of the equation, (81) ^( sin ^(2)x) + (81) ^( cos ^(2)x) x = 30 in the interval [0, pi ] is equal to :

The solution of 3^(2x- 1) = 81^(1- x) is

If 0lexlepi and 81^(sin^(2x))+81^(cos^(2x))=30 then x=

If x in[0,2 pi] then the number of solution of the equation 81^(sin^(2)x)+81^(cos^(2)x)=30

if 0<=x<=pi and 81^( sin ^(2)x)+81^(cos^(2)x)=30 then x=

If the angles of a triangle ABC satisfy the equation : 81^(sin^(2)x)+81^(cos^(2)x)=30 , then the triangle can't be

if 0<=x<=pi and 81^(sin^2x)+81^(cos^2x)=30 then x=