Home
Class 12
MATHS
Let A is a matrix of order 3xx3 defined ...

Let A is a matrix of order `3xx3` defined as `A=[a_(ij)]3xx3,` where `a_(ij)={:(lim),(xrarr0):}(1-cos(ix))/(sin(ix)tan(jx))(AA1lei,j,le3), " then " A^2` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Write down the matrix A=[a_(ij)]_(2xx3), where a_ij=2i-3j

Construct a 3xx3 matrix A=[a_(ij)] where a_(ij)=2(i-j)

Construct a 3xx4 matrix [a_(ij)] , where a_(ij)=2i-j .

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

Construct a matrix [a_(ij)]_(3xx3) ,where a_(ij)=(i-j)/(i+j).

Construct a matrix [a_(ij)]_(3xx3) ,where a_(ij)=(i-j)/(i+j).

Construct the matrix [a_(ij)]_(2xx3) where a_(ij)=|i-j| .

Consider a 2xx2 matrix A=[a_(ij)] where a_(ij)=abs(2i-3j) Write A