Home
Class 12
MATHS
If y=10^((1)/(1-log(10)x)) and z=10^((1)...

If `y=10^((1)/(1-log_(10)x))` and `z=10^((1)/(1-log_(10)y))` show that `x=10^((1)/(1-log_(10)z))`

Promotional Banner

Similar Questions

Explore conceptually related problems

y=x^((1)/(log_(10)x))

If y = a^(1/(1-log_(a)x)) and z = a^(1/(1-log_(a)y)) , then show that x = a^(1/(1-log_(a)z))

If y = a^(1/(1-log_(a) x)) and z = a^(1/(1-log_(a)y))",then prove that "x=a^(1/(1-log_(a)z))

If y = a^(1/(1-log_(a) x)) and z = a^(1/(1-log_(a)y))",then prove that "x=a^(1/(1-log_(a)z))

If y = a^(1/(1-log_(a) x)) and z = a^(1/(1-log_(a)y))",then prove that "x=a^(1/(1-log_(a)z))

If y = a^(1/(1-log_(a) x)) and z = a^(1/(1-log_(a)y))",then prove that "x=a^(1/(1-log_(a)z))

Given y=(1)/(10^(1-log_(10)x)),z=(1)/(10^(1-log_(10)y)), if x=(1)/(10^(a+b log_(10)z)) then (b-a) equals

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1