Home
Class 12
MATHS
Without expanding as far as possible, pr...

Without expanding as far as possible, prove that `|{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}|`=`(x-y)(y-z)(z-x)(x+y+z)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}|=(x-y)(y-z)(x+y+z)

Prove that : =|{:(1,1,1),(x,y,z),(x^(2),y^(2),z^(2)):}|=(x-y)(y-z)(z-x)

Prove that : |{:(1,x,x^(3)),(1,y,y^(3)),(1,z,z^(3)):}| =(x-y)(y-z)(z-x)(x+y+z)

Prove that : |{:(1,x,x^(3)),(1,y,y^(3)),(1,z,z^(3)):}|

Prove that |(1,x,x^(3)),(1,y,y^(3)),(1,z,z^(3))|=(x-y)(y-z)(z-x)(x+y+z)

Show that |{:(1,x, x ^(3)),(1,y,y ^(3)),(1,z,z^(3)):}| = (x-y) (y-z) (z-x) (x + y + z)

if x+y+z=0 , then show that, |{:(1,1,1),(x,y,z),(x^3,y^3,z^3):}|=0

Prove that: {:|(1,x,x^3),(1,y,y^3),(1,z,z^3)| = (x-y)(y-z)(z-x)(x+y+z)

((x-y)^(3)+(y-z)^(3)+(z-x)^(3))/((x-y)(y-z)(z-x))=

Prove that : |{:(1,x,yz),(1,y,zx),(1,z,xy):}|=(x-y)(y-z)(z-x)