Home
Class 10
MATHS
" 28."(x-1)/(2x+1)+(2x+1)/(x-1)=(5)/(2),...

" 28."(x-1)/(2x+1)+(2x+1)/(x-1)=(5)/(2),x!=-(1)/(2),1

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve by factorization: (x-1)/(2x+1)+(2x+1)/(x-1)=(5)/(2),quad x!=-(1)/(2),1

Solve for x:(x-1)/(2x+1)+(2x+1)/(x-1)=2, where x!=-(1)/(2),1

(3)/(x+1)-(2)/(x-1)=(5)/(x^(2)-1)

Solve by factorization: (x-1)/(2x+1)+(2x+1)/(x-1)=5/2,\ \ x!=-1/2,\ 1

Solve for x: (x-1)/(2x+1) +(2x+1)/(x-1)=2," where "x ne -(1)/(2),1

(x^((5)/(2))+2x^(-(1)/(2)))/(x^((5)/(2))-x^(-(1)/(2)))x5/2+2x-1/2 Differentiate 5/2-1/2 with respect to x .

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

Solve for x : (x - 1)/(2x + 1) + (2x + 1)/(x -1) = 2 , where x ne - (1)/(2) , 1

Add :5x^(2)-(1)/(3)x+(5)/(2),-(1)/(2)x^(2)+(1)/(2)x-(1)/(3) and -2x^(2)+(1)/(5)x-(1)/(6)

2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x + 1)^(5)) + …] is equal to ,