Home
Class 11
MATHS
(a^2+b^2)^3=(a^3+b^3)^2...

`(a^2+b^2)^3=(a^3+b^3)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Expand . a^3 b^2, a^2 b^3, b^2 a^3, b^3 a^2 Are they all same ?

Expand a^3b^2, a^2b^3, b^2a^3, b^3a^2 . Are they all same?

If a + b + c = 0 , then prove that (a^2+b^2+c^2)/(a^3+b^3+c^3)+2/3(1/a+1/b+1/c)=0

Determine the value of (a^2+b^2)/(a^3+b^3) when a = 2 + sqrt3 and b = 2-sqrt3

The value of [{(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3}/{(a-b)^3+(b-c)^3+(c-a)^3}] = (1) 3(a+b)(b+c)(c+a) (2) 3(a-b)(b-c)(c-a) (3) (a+b)(b+c)(c+a) (4) 1

If A=|(1,1,1),(a,b,c),(a^3,b^3,c^3)|, B=|(1,1,1),(a^2,b^2,c^2),(a^3,b^3,c^3)|, C=|(a,b,c),(a^2,b^2,c^2),(a^3,b^3,c^3)| , then which relation is correct :

If A=|(1,1,1),(a,b,c),(a^3,b^3,c^3)|, B=|(1,1,1),(a^2,b^2,c^2),(a^3,b^3,c^3)|, C=|(a,b,c),(a^2,b^2,c^2),(a^3,b^3,c^3)| , then which relation is correct :

If a/b=7/3 then find the value of (2a^2+3b^2)/(2a^2-3b^2) .

The value of [(a^2-b^2)^3+(b^2-c^2)^3 + (c^2-a^2)^3] div [(a-b)^3+(b-c)^3+(c-a)^3 ] is equal to: (Given a ne b ne c ) [(a^2-b^2)^3+(b^2-c^2)^3 + (c^2-a^2)^3] div [(a-b)^3+(b-c)^3+(c-a)^3 ] का मान बराबर है: ( a ne b ne c दिया)

The product (a+b)(a-b)(a^2-a b+b^2)(a^2+a b+b^2) is equal to: (a) a^6+b^6 (b) a^6-b^6 (c) a^3-b^3 (d) a^3+b^3