Home
Class 9
MATHS
" (ix) "(tan A+tan B)/(1-tan A*tan B)," ...

" (ix) "(tan A+tan B)/(1-tan A*tan B)," यदि "sin A=(1)/(sqrt(2))" और "cos B=(sqrt(3))/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

By using above basic addition/ subtraction formulae, prove that (i) tan (A+B)=(tan A+tan B)/(1-tan A tan B) , (ii) tan (A-B)=(tan A-tanB)/(1+tan A tan B) (iii) sin2theta=2sintheta costheta , (iv) cos2theta=cos^(2)theta=1-2sin^(2)theta=2cos^(2)theta-1 (v) tan 2theta=(2 tan theta)/(1-tan^(2) theta)

By using above basic addition/ subtraction formulae, prove that (i) tan (A+B)=(tan A+tan B)/(1-tan A tan B) , (ii) tan (A-B)=(tan A-tanB)/(1+tan A tan B) (iii) sin2theta=2sintheta costheta , (iv) cos2theta=cos^(2)theta=1-2sin^(2)theta=2cos^(2)theta-1 (v) tan 2theta=(2 tan theta)/(1-tan^(2) theta)

By using above basic addition/ subtraction formulae, prove that (i) tan (A+B)=(tan A+tan B)/(1-tan A tan B) , (ii) tan (A-B)=(tan A-tanB)/(1+tan A tan B) (iii) sin2theta=2sintheta costheta , (iv) cos2theta=cos^(2)theta=1-2sin^(2)theta=2cos^(2)theta-1 (v) tan 2theta=(2 tan theta)/(1-tan^(2) theta)

If sin (A+B)=1 and tan (A-B)= (1)/(sqrt(3)) then A-B=?

If sin (A+B)=1 and tan (A-B)= (1)/(sqrt(3)) then A-B=?

Find the value of sin[tan tan^(-1)(-sqrt(3))+cos^(-1)((sqrt(3))/(-2))]

If 2 tan A = 3 tan B.show that tan (A - B)= (sin2B)/(5-cos2B)

If A+B=90^(0), prove that sqrt((tan A tan B+tan A cot B)/(sin A sec B)-(sin^(2)B)/(cos^(2)A))=tan A

If A+B=90^(@); prove that sqrt((tan A tan B+tan A cot B)/(sin A sec B)-(sin^(2)B)/(cos^(2)A))=tan A

The expression (1)/(sqrt(2)){(sin tan^(-1)cos tan^(-1)t)/(cos tan^(-1)sin cot^(-1)sqrt(2)t)}*{sqrt((1+2t^(2))/(2+t^(2)))}