Home
Class 12
MATHS
"If "y=Ae^(mx)+Be^(nx)," then prove that...

"If "y=Ae^(mx)+Be^(nx)," then prove that "y_(2)-(m+n)y_(1)+mny=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=ae^(nx)+be^(-nx) , then prove that y''=n^(2)y .

if y=Ae^(mx)+Be^(nx) then prove that (d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+mny=0

IF y=Ae^(mx)+Be^(nx) , show that y_2-(m+n)y_1+mny=0 .

If y= A e^(mx) + B e^(nx) , show that y2-(m+n)y1+(mn)y =0

If y=Ae^(mx)+Be^(nx) , prove that (d^(2)y)/(dx^(2)) -(m+n) (dy)/(dx) + mny=0 .

If y=ae^(mx)+be^(nx) , show that (d^2y)/(dx^2)-(m+n)dy/dx+mny=0

If y=Ae^(mx)+Be^(nx) then show that (d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+mny=0

If y=ae^(mx)+be^(-mx)," then "y_(2)=