Home
Class 12
MATHS
If A+B+C= 2S , " then " sin (S-A) sin(S-...

If `A+B+C= 2S , " then " sin (S-A) sin(S-B) + sinS sin(S-C)= `

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B + C = 2S then sin (SA) sin (SB) + sin S sin (SC) =

If A + B + C = 2S, prove that sin (S- A) sin (S - B) +sin S sin (S-C) = sin A sin B

If A + B + C = 2S then sin (SA) + sin (SB) + sin (SC) -sin S =

If A+B +C =2S, prove that : sin (S - A) + sin (S- B) + sin (S-C)-sinS= 4 sin frac (A)(2) sin frac (B)(2) sin frac (C)(2) .

If A +B+C= 2S , then prove that (i) sin (S-A)+sin (S-B) + sin C=4 cos . (S-A)/(2) cos. (S-B)/(2) sin .(C)/(2) (ii) cos (S-A)+cos (S-B)+cos C=-1+4 cos. (S-A)/(2) cos.(S-B)/(2)cos. (C)/(2)

If A + B + C = 2S, then prove that sin (SA) + sin (SB) + sin C = 4cos ((Sa) / (2)) cos ((sb) / (2)) sin ((c) / (2))

If A+B+C=2S , prove that: sin(S-A)+sin(S-B)+sin(S-C)-sinS = 4sinA/2sinB/2sinC/2

A + B + C = 2S rArr sin S + sin (SA) + sin (SB) -sin (SC) =

If A+B+C=2S, " then " sin^(2)S-sin^(2)(S-A)+sin^(2)(S-B)-sin^(2)(S-C)=