Home
Class 12
MATHS
If y = tan^(-1) (x/(1 + 6x^2)) + tan^(-1...

If `y = tan^(-1) (x/(1 + 6x^2)) + tan^(-1) ((2x - 1)/(2x + 1)), (AA x > 0)` then `(dy)/(dx)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((4x)/(1+5x^(2)))+tan^(-1)((2+3x)/(3-2x)) , then (dy)/(dx) is equal to a) (5)/(1+25x^(2)) b) (1)/(1+25x^(2)) c)0 d) (5)/(1-25x^(2))

If y = tan^(-1) ((2x)/(1-x^(2))) then dy/dx =

If y = tan^(-1) {(x)/(1 + sqrt(1 - x^(2)))} + sin { 2 tan^(-1) sqrt((1 - x)/(1 + x))}, "then" (dy)/(dx) =

If y=tan^(-1)((sqrt(1+x^(2))-1)/(x)) and z=tan^(-1)((2x)/(1-x^(2))) , then (dy)/(dz) is equal to -

If y = tan^(-1)((3x-x^(3))/(1-3x^(2))) + tan^(-1) ((4x-4x^(3))/(1-6x^(2) + 4x^(4))) then (dy)/(dx) =