Home
Class 11
MATHS
The sum to infinite terms of the series ...

The sum to infinite terms of the series `cot^(- 1)(2^2+1/2)+cot^(- 1)(2^3+1/(2^2))+cot^(- 1)(2^4+1/(2^3))+...` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of infinite terms of the series cot^(-1)(2^(2)+1/2)+cot^(-1)(2^(3)+1/2^(2))+cot^(-1)(2^(4)+1/2^(3))+…=cot^(-1)k then k =

If the sum of first 16 terms of the series s=cot^(-1)(2^2+1/2)+cot^(-1)(2^3+1/(2^2))+cot^(-1)(2^4+1/(2^3))+ up to terms is cot^(-1)((1+2^n)/(2(2^(16)-1))) , then find the value of ndot

Find the sum to n terms of the series S_(n)=cot^(-1)(2^(2)+(1)/(2))+cot^(-1)(2^(3)+(1)/(2^(2)))+cot^(-1)(2^(4)+(1)/(2^(3)))+..... upto n terms ?

The sum of the infinite terms of the series cot^(-1)(1^2+3/4)+cot^(-1)(2^2+3/4)+cot^(-1)(3^2+3/4)+...+oo is equal to a. tan^(-1)(1) b. tan^(-1)\ \ (2) c. tan^(-1)2\ d. (3pi)/4-tan^(-1)3

The sum of the infinite terms of the series cot^(-1)(1^2+3/4)+cot^(-1)(2^2+3/4)+cot^(-1)(3^2+3/4)+...+oo is equal to a. tan^(-1)(1) b. tan^(-1)\ \ (2) c. tan^(-1)2\ d. (3pi)/4-tan^(-1)3

Sum of infinite terms of the series cot^(-1)(1^(2)+3/4)+cot^(-1)(2^(2)+3/4)+cot^(-1)(3^(2)+3/4)+….. is

If the sum of first 16 terms of the series s=cot^(-1)(2^(2)+(1)/(2))+cot^(-1)(2^(3)+(1)/(2^(2)))+cot^(-1)(2^(4)+(1)/(2^(3)))+ up to terms is cot^(-1)((1+2^(n))/(2(2^(16)-1))), then find the value of n.

Sum of infinite terms of the series cot^(-1) ( 1^(2) + 3/4) + cot^(-1) ( 2^(2) + 3/4) + cot^(-1) ( 3^(2) + 3/4) + ... is

Sum of infinite terms of the series cot^(-1) ( 1^(2) + 3/4) + cot^(-1) ( 2^(2) + 3/4) + cot^(-1) ( 3^(2) + 3/4) + ... is