Home
Class 12
MATHS
Simplify: cos theta[{:(costheta,sinthe...

Simplify:
`cos theta[{:(costheta,sintheta),(-sintheta,costheta):}]+sintheta[{:(sin theta ,-costheta),(costheta, sintheta):}]`

Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OSWAAL PUBLICATION|Exercise MATRICES AND OPERATIONS (Short Answer Type Question -I )|1 Videos
  • MATRICES

    OSWAAL PUBLICATION|Exercise MATRICES AND OPERATIONS (Short Answer Type Question -II )|5 Videos
  • LINEAR PROGRAMMING

    OSWAAL PUBLICATION|Exercise Long Answer Type Questions-lI|26 Videos
  • PROBABILITY

    OSWAAL PUBLICATION|Exercise Random Variable and Its Probability Distribution ( Long Answer Type Questions -I )|14 Videos

Similar Questions

Explore conceptually related problems

Simplify : cos theta[(cos theta,sin theta),(-sin theta,cos theta)]=sin theta[(sin theta,-cos theta),(cos theta,sin theta)]

Simplify costheta[(costheta,sin theta),(-sintheta,costheta)]+sintheta[(sintheta,-costheta),(costheta,sintheta)]

If A=[{:(costheta, sintheta),(-sintheta, costheta):}] , then A.A' is

(sintheta)/(1+costheta) is:

If A = {:[(cos^3theta,sintheta),(-sin^3theta,cos^3theta)]:} then A^3 =

(sintheta+costheta)(tantheta+cottheta)=

if A=[(costheta,sintheta),(-sintheta,costheta)],then A^(2)=I is true for

(1-cos theta)/(sin theta)=(sin theta)/(1+cos theta)

(1-cos theta)/(sin theta)=(sin theta)/(1+cos theta)

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is