Home
Class 12
MATHS
If A = [(2,0,1),(0,-3,0),(0,0,4)], verif...

If `A = [(2,0,1),(0,-3,0),(0,0,4)]`, verify `A^(3) - 3A^(2) - 10A + 24I = 0` where 0 is zero matrix of order `3 xx 3`.

Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OSWAAL PUBLICATION|Exercise SYMMETRIC AND SKEW SYMMETRIC MATRICES ( Very Short Answer Type Questions-I )|5 Videos
  • MATRICES

    OSWAAL PUBLICATION|Exercise SYMMETRIC AND SKEW SYMMETRIC MATRICES ( Short Answer Type Questions- II )|4 Videos
  • MATRICES

    OSWAAL PUBLICATION|Exercise MATRICES AND OPERATIONS (Short Answer Type Question -II )|5 Videos
  • LINEAR PROGRAMMING

    OSWAAL PUBLICATION|Exercise Long Answer Type Questions-lI|26 Videos
  • PROBABILITY

    OSWAAL PUBLICATION|Exercise Random Variable and Its Probability Distribution ( Long Answer Type Questions -I )|14 Videos

Similar Questions

Explore conceptually related problems

If A= Verify A^3-3A^2-10A+24I=0 where O is zero matrix of order 3xx3

If A = [(1,0,2),(0,2,1),(2,0,3)] , prove that A^(3) -6A^(2) + 7A + 2I = 0 .

Find |3A|,if A=[(1,0,1),(0,1,2),(0,0,4)]

If A = [{:(1,0,2),(0,2,1),(2,0,3):}],Provethat A^(3)-6A^(2)+7A+21=0

If A = [(1,0,0),(0,1,1),(0,-2,4)] and also A^(-1)=1/6 (A^(2)+cA+dI) , where I is unit matrix , then the ordered pair (c,d) is :

If A= {:[( 1,0,1),(0,1,2),(0,0,4)]:} ,then show that |3A| =27|A|

If A= ((2,0,1),(2,1,3),(1,-1,0)) then find the value of A^(2)-3A +2I.

Let A = [[1,0,0],[1,0,1], [0,1,0]] " satisfies " A^(n) = A^(n-2) + A^(2 ) -I for nge 3 and consider matrix underset(3xx3)(U) with its columns as U_(1), U_(2), U_(3), such that A^(50)U_(1)=[[1],[25],[25]],A^(50) U_(2)=[[0],[1],[0]]and A^(50) U_(3)[[0],[0],[1]] The value of abs(A^(50)) equals