Home
Class 12
MATHS
Prove that int(0)^(a) f(x) dx = int(0)^(...

Prove that `int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx` and hence evaluate the following:
(c) `int_(0)^(pi/2)(sqrt(sinx))/(sqrt(sin x) + sqrt(cos x))dx`

Answer

Step by step text solution for Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (c) int_(0)^(pi/2)(sqrt(sinx))/(sqrt(sin x) + sqrt(cos x))dx by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • II PUC JULY -2016

    OSWAAL PUBLICATION|Exercise PART-D ( IV. Answer any ten questions: )|10 Videos
  • II PUC APRIL 2020 CLASS - XII

    OSWAAL PUBLICATION|Exercise PART - E|2 Videos
  • II PUC MARCH - 2017

    OSWAAL PUBLICATION|Exercise PART - E|3 Videos

Similar Questions

Explore conceptually related problems

Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (b) int_(0)^(pi/2) cos^(2) xdx .

Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (e) int_(0)^(2)xsqrt(2 - x) dx .

Knowledge Check

  • int_0^(pi//2)(sqrt(sin x))/(sqrt(sin x) + sqrt(cos x)) dx equals:

    A
    `pi/4`
    B
    `pi/2`
    C
    zero
    D
    1
  • int (sin 5x)/(sqrt(cos 5x)) dx =

    A
    `2/5 sqrt(cos 5x)`
    B
    `-2/5 sqrt(cos 5x)`
    C
    `10 sqrt(cos 5x)`
    D
    `-10 sqrt(cos 5x)`
  • int_0^(pi//2) (sqrt( cot x))/(sqrt(cot x) - sqrt(tan x)) dx is :

    A
    `pi//4`
    B
    `pi//2`
    C
    `pi`
    D
    `0`
  • Similar Questions

    Explore conceptually related problems

    Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (a) int_(0)^(a) (sqrt(x))/(sqrt(x) + sqrt(a) - x)dx

    Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (d) int_(0)^(1)x(1 -x)^(n)dx .

    Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (f) int_(0)^(pi)(xdx)/(a^(2)cos^(2)x + b^(2)sin^(2)x)

    Prove that int_(0)^(a)(x)dx = int_(0)^(a) f(a-x)dx and hence evaluate int_(0)^(pi/4)log (1 + tan x)dx .

    Prove that int_(0 )^(a) f (x) dx = int_(0)^(a) f (a -x) dx hence evaluate int_(0)^(pi/2) ( cos^5 x)/( cos^2 x+ sinn ^5 x) dx