OSWAAL PUBLICATION|Exercise PART-D ( IV. Answer any ten questions: )|10 Videos
II PUC APRIL 2020 CLASS - XII
OSWAAL PUBLICATION|Exercise PART - E|2 Videos
II PUC MARCH - 2017
OSWAAL PUBLICATION|Exercise PART - E|3 Videos
Similar Questions
Explore conceptually related problems
|[1, a, a^2-b c],[1,b, b^2-c a],[1,c, c^2-a b]|=
Prove that |(1,a^2,bc),(a,b^2,ca),(1,c^2,ab)|=(a-b)(b-c)(c-a)
Prove that |(-a^2,ab,ac),(bc,-b^2,bc),(ca,cb,-c^2)|=4a^(2)b^(2) c^(2) .
Prove that {:|( a,a+b,a+b+c) ,( 2a,3a+2b,4a+3b+2c),( 3a,6a+3b,10a+6b+3c)|:}=a^(3)
Without expanding the determinant, prove that {:|( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) |:} ={:|( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) |:}
a. Minimize z =-3x+4y subject to constraints. x+2yle8 3x+2yle12 xge0, yge0 by graphical method. b. Prove that {:abs((1,a,a^2),(1,b,b^2),(1,c ,c^2)):} = (a - b)(b-c)(c-a)
Prove that |(1,1,1),(a,b,c),(a^3,b^3,c^3)| = (a - b)(b-c)(c-a)(a+b+c) .
Using the property of determinants prove that {:|( 3a,-a+b,-a+c),( -b+a, 3b,-b+c) ,( -c+a,-c+b,3c) |:} = 3( a+b+c) ( ab+bc+ca)
Prove that |{:(,1,a,a^(2)),(,1,b,b^(2)),(,1,c,c^(2)):}|=(a-b)(b-c)(c-a)