Home
Class 12
MATHS
Find the shortest distance between the l...

Find the shortest distance between the lines ` vec r=( hat i+2 hat j+ hat k)+lambda( hat i- hat j+ hat k)` and ` vec r=(2 hat i- hat j- hat k)+mu(2 hat i+ hat j+2 hat k)`

Promotional Banner

Topper's Solved these Questions

  • II PUC TOPPER'S ANSWERS MARCH (2017)

    OSWAAL PUBLICATION|Exercise PART - D Answer any six questions :|11 Videos
  • II PUC TOPPER'S ANSWERS MARCH (2017)

    OSWAAL PUBLICATION|Exercise PART - E Answer any one question :|4 Videos
  • II PUC TOPPER'S ANSWERS MARCH (2017)

    OSWAAL PUBLICATION|Exercise PART - B (Answer any ten questions:)|15 Videos
  • II PUC TOPPER ANSWERS MARCH-2016

    OSWAAL PUBLICATION|Exercise PART - E|2 Videos
  • INTEGRALS

    OSWAAL PUBLICATION|Exercise DEFINITE INTEGRALS (LONG TYPE ANSWER TYPE QUESTIONS - III)|40 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines. r=(hat(i)+2hat(j)+hat(k))+lambda(hat(i)-hat(j)+hat(k)) " and " r=(2hat(i)-hat(j)-hat(k))+mu(2hat(i)+hat(j)+2hat(k)) .

Find the shortest distance between the lines whose vector equations are vec(r) = (hat(i) + hat(j)) + lambda(2 hat(i) - hat(j) + hat(k)) and vec(r) = (2 hat(i) + hat(j) - hat(k)) + mu (3 hat(i) - 5 hat(j)+2 hat(k)) .

Find the angle between the vectors vec(a) = hat(i) + hat(j) + hat(k) and vec(b) = hat(i) - hat(j) + hat(k) .

Find the sine of the angle between the vectors hat(i) + 2 hat(j) + 2 hat(k) and 3 hat(i) + 2 hat(j) + 6 hat(k)

Find the shortest distance between two lines whose vector equations are vec(r) = (hat(i) + 2 hat(j) + 3 hat(k))+lambda(hat(i)- 3hat(j) + 2 hat(k)) and vec(r) = (4 hat(i) + 5 hat(j) + 6 hat(k))+ mu (2 hat(i)+3 hat(j) + hat(k)) .

Find the distance between the lines overset(to)(r ) = hat(i) + 2 hat(j) - 4 hat(k) + lambda ( 2 hat(i) + 3 hat(j) + 6 hat(j) ) & overset(to)(r ) = 3 hat(i) + 3 hat(j) - 5 hat(k) + mu ( -2 hat(i) + 3 hat(j) + 8 hat(k) )

Find the distance between the parallel lines vec(r)=hat(i)+2hat(j)-4hat(k)+m(2hat(i)+3hat(j)+6hat(k)) " and " vec(r)=3hat(i)+3hat(j)-5hat(k)+n(2hat(i)+3hat(j)+6hat(k))

Find the angle between the pair of lines vec(r)=3hat(i)+5hat(j)-hat(k)+lambda(hat(i)+hat(j)+hat(k))" and "vec(r)=7hat(i)+4hat(k)+mu(2hat(i)+2hat(j)+2hat(k))