Home
Class 12
MATHS
If A=[1 0 2 0 2 1 2 0 3] , prove that A^...

If `A=[1 0 2 0 2 1 2 0 3]` , prove that `A^3-6A^2+7A+2I=0`

Promotional Banner

Topper's Solved these Questions

  • II PUC TOPPER'S ANSWERS MARCH (2017)

    OSWAAL PUBLICATION|Exercise PART - E Answer any one question :|4 Videos
  • II PUC TOPPER'S ANSWERS MARCH (2017)

    OSWAAL PUBLICATION|Exercise PART - C Answer any ten Questions.|14 Videos
  • II PUC TOPPER ANSWERS MARCH-2016

    OSWAAL PUBLICATION|Exercise PART - E|2 Videos
  • INTEGRALS

    OSWAAL PUBLICATION|Exercise DEFINITE INTEGRALS (LONG TYPE ANSWER TYPE QUESTIONS - III)|40 Videos

Similar Questions

Explore conceptually related problems

If A = [{:(1,0,2),(0,2,1),(2,0,3):}],Provethat A^(3)-6A^(2)+7A+21=0

A= [[-1, 0],[0,2]] then A^3-A^2=

If A=[(3,1),(-1,2)] , show that A^(2)-5A+7I=0 .

If A=[(1,2,3),(3,-2,1),(4,2,1)] then show that A^3-23A -40 I=0 .

Solve the following equations by matrix method. For the matrix A = [(1,1,1),(1,2,-3),(2,-1,3)] . Show that A^(3) - 6A^(2) + 5A + 11 I = 0 . Hence, find A^(-1) .

Solve the following equations by matrix method. If A = [(2,-1,1),(-1,2,-1),(1,-1,2)] verify that A^(3) - 6A^(2) + 9A = 4 I = 0 and hence, find A^(-1) .

If A= [[1 ,-2, 2],[0, 2, -3],[3 ,-2, 4]] , then A . adj A=

If A=[[1,0],[-1,7]] and A^2-8 A+k I=0 , then k=

If A = [(2,0,1),(0,-3,0),(0,0,4)] , verify A^(3) - 3A^(2) - 10A + 24I = 0 where 0 is zero matrix of order 3 xx 3 .

If A=[[3,-2],[1,2]] and A^2+k A+8 I=0 , then k=