Home
Class 12
MATHS
सदिशों bar(a) और bar(b) के बीच का कोण क्...

सदिशों `bar(a)` और `bar(b)` के बीच का कोण क्या है जिनके परिमाण 2 और `sqrt(3)` हैं, दिया है कि `bar(a)cdot bar(b)=sqrt(3)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

bar(a) , bar(b) and bar(c) are three vectors such that bar(a) + bar(b) + bar(c) = bar(0) and |bar(a)| =2, |bar(b)| =3, |bar(c)| =5 ,then bar(a) . bar(b) + bar(b) . bar(c) + bar(c) . bar(a) equals

If bar(a) = 2bar(i) - 3bar(j) + bar(k) and bar(b) = bar(i) + 4bar(j) -2bar(k) , then find (bar(a) + bar(b))xx(bar(a)-bar(b))

If bar(c)=3bar(a)-2bar(b) , then prove that [bar(a)bar(b)bar(c)]=0 .

The length of longer diagonal of the parallelogram constructed an 5bar(a)+2bar(b) and bar(a)-3bar(b) as sides if it is given |bar(a)|=2sqrt(2) , |bar(b)|=3 and (bar(a),bar(b))=pi/4 is

bar(a) and bar(b) are unit vectors. |bar(a)+bar(b)|=sqrt(3) then the value of (3bar(a)-4bar(b)).(2bar(a)+5bar(b)) = ……………

If bar(a) , bar(b) and bar(a)-sqrt2bar(b) are unit vectors, then what is the angle between bar(a), bar(b) ?