Home
Class 12
MATHS
" (ख) (i) यदि "x^(y)=e^(x-y)" है,तो सिद्...

" (ख) (i) यदि "x^(y)=e^(x-y)" है,तो सिद्ध कीजिए कि : "(dy)/(dx)=(log x)/((1+log x)^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

(i) x(dy)/(dx)+y=log x

If x ^(y) = e ^( x -y) , then show that (dy)/(dx) = (log x )/( (1 + log x ) ^(2))

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

if x^(y)=e^(x-y) then prove that (dy)/(dx)=(log_(e)x)/((1+log_(e)x)^(2))

If x^y = e^(x + y) , show that (dy)/(dx) = (log x - 2)/((1 - log x)^2)

x^(y)=e^(x-y) so,prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If y log x=x-y prove that (dy)/(dx)=(log x)/((1+log x)^(2))